
(12) United States Patent

US007263512B2

(10) Patent N0.: US 7,263,512 B2
McGoveran (45) Date of Patent: Aug. 28, 2007

(54) ACCESSING AND UPDATING VIEWS AND 5,226,158 A 7/1993 Horn et a1.
RELATIONS IN A RELATIONAL DATABASE 5,247,665 A 9/ 1993 Matsuda et 211.

5,455,945 A 10/1995 Vanderdrift

(76) Inventor: David O. McGoveran, 15905 Bear i * et ‘il'l 707001
, , 0y e a

$5331; Rd" Boulder Creek’ CA (Us) 5,566,333 A 10/1996 Olson et 31.
5,590,324 A 12/1996 Leung et a1.

. 5,615,361 A 3/1997 L t l.

(*) Notice: Subject to any disclaimer, the term ofthis 5 701 453 A 12/1997 632?; :t al‘
Pawnt is extended Or adjusted under 35 5370134166 A * 12/1997 Yong et a1. 707/100
U-S-C- 154(1)) by 114 days- 5,717,924 A 2/1998 Kawai

5,734,887 A 3/1998 Kingberg et a1.
(21) Appl. N0.: 10/114,609 5,870,739 A * 2/1999 Davis et a1. 707/4

6,088,524 A * 7/2000 Levy et a1. 707/3

(22) Filed: Apr. 2, 2002 6,578,028 B2* 6/2003 Egilsson et a1. 707/2
6,591,272 B1* 7/2003 Williams 707/102

Prior Data .. US 2003/0187864 A1 Oct. 2, 2003 * cited by examiner

(51) Int CL Prir'nary ExamineriDon Wong
ASSISZLU’IZ Exammer4Cheryl M Shechtman

G06F 17/30 (2006.01)
G06F 17/00 (2006.01) (57) ABSTRACT

G06F 12/00 (2006'01)_ _ _ _ This is a method for accessing and updating vieWs and other
(52) US. Cl. 707/2, 707/1, 707/3, 707/4, relations of a relational database that, (1) does not require

_ _ _ 707/100’ 707/102’ 707/201 any distinction between base and derived expressions of the
(58) Field of Classi?cation Search 707/ 141, data elements; (2) provides data independence; (3) ensures

_ _ 707/ 109: 102: 201 predictable behavior of all updates; and, (4) provides uni
See apphcanon ?le for Complete Search hlstory- formity for all updates independent of data source or type.

(56) References Cited The method further permits updating of all relations (both

US. PATENT DOCUMENTS

4,514,826 A 4/1985 Iwata et a1.
4,769,772 A * 9/1988 DWyer 707/2

4,918,593 A 4/1990 Huber

Ready for Next Transaction

C536 FEE-PROCESSING

V

HEDUC'HON

V

MODiFiCATION

47 UPDATE VALIDATION I

7

Transaction Steps are compieted

FINAL VALiDATiON

base and derived) Without unnecessary duplication, overlap,
or the creation of null elements, and Without using unnec
essary physical memory for the resulting data elements.

53 Claims, 6 Drawing Sheets

Transaction
steps remain

U.S. Patent Aug. 28, 2007 Sheet 1 0f 6 US 7,263,512 B2

2

R i, {in , igu ,

FIGURE 1

U.S. Patent Aug. 28, 2007 Sheet 2 0f 6 US 7,263,512 B2

<—N SC 25

RDB

23 <-—> CE 27

RDBMS 21

FIGURE 2

U.S. Patent Aug. 28, 2007 Sheet 3 0f 6 US 7,263,512 B2

Dependency
Table 1 35 Trees

Table 2 29

Tabie a 31 RPS

SF (Operation 37

Authorizations)

SC 25

Figure 3

U.S. Patent Aug. 28, 2007 Sheet 4 0f 6 US 7,263,512 B2

ENUM ENAME ETITLE EDEPT EDEPT
NAM E

l

3 Bob Findlay (3.0.0. 1 Corp. HQ

1 9 R°wena Chief Counsel 1 a Legal
Hatchett

5 6 7 saw Gait Admin. Ass‘! 3 5 Shipping
l l Colo-Fade

1 ,4 2 4 Tee Yang Janitor I 2 5 5 Atlanta Fieki
Office

FIGURE 4

U.S. Patent Aug. 28, 2007 Sheet 5 0f 6 US 7,263,512 B2

Ready for Next Transactien

V

[PRE-PROCESSING I4‘

Transaction
steps remain

MODIFICATION

@PDATE VALIDA'HON)

AFTER IMAGE

Transaction Steps are completed

@NAL VALIDATiON]

FIGURE 5

U.S. Patent Aug. 28, 2007 Sheet 6 6f 6 US 7,263,512 B2

ORIGINAL PROBLEM:

CREATE VIEW
JOIN_EM AS

I
[SELECT E.ENUM, E.DEPT, M.DEPT, M.MNUM FROM‘

WWHERE E.DEPT = M.DEPT|

UPDATE JOIN_EM

[SET MNUM = 1, MDEPT = 2|

[WHERE ENUM =5 AND EDEPT =1 AND MNUM =2]

RESOLUTION in PSEUDO-SQLT

App/y 09/916 Phase DELETE MGR
f0 MGR WHERE MNUM = 2 AND DEPT =1

AND EXISTS
(SELECT' ENUM FROM EMP

WHERE ENUM = 5 AND DEPT =1)

v I
INSERT INTO MGR (MNUM = 1, DEPT = 2)

Apply Insert Phase WHERE EXISTS
to MGR (SELECT’ MNUM FROM MGR WHERE

MNUM = 2 AND DEPT =1)

I
' DELETE EMP

App/y Delete phase WHERE ENUM = 5 AND DEPT =1 AND EXISTS
to EMP (sELEcT' MNUM FROM MGR WHERE

MNUM = 2 AND DEPT =1)

INSERT INTO EMP
. (DEPT = 2, ENUM = s, ESAL = (SELECT ESAL

FROM EMP WHERE ENUM = 5))
Apply Insert Phase AND EXISTS (SELECT MNUM FROM MGR WHERE

to EMP MNUM = 2 AND DEPT =1)

FIGURE 6

US 7,263,512 B2
1

ACCESSING AND UPDATING VIEWS AND
RELATIONS IN A RELATIONAL DATABASE

CROSS-REFERENCE TO RELATED
APPLICATIONS

Not Applicable

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable

BACKGROUND OF THE INVENTION

1. Field of the Invention
Database accessing that supports identifying relations

amongst individual data elements (as distinct from the
ef?cient accessing of discrete, individual data elements) has
groWn in poWer and utility. Businesses are able to obtain
valuable neW business insights by using methods for access
ing and vieWing data that support combinations, re-combi
nations, or analyses of both existing data elements and
structures, combinations, or relations of said data elements.
Several major corporations (e.g. Oracle Corporation) have
shoWn that a relational database (“RDB”) and a relational
database management system (“RDBMS”) that enable more
?exible database accessing are valuable.

This invention primarily implements a methodology for
uniform handling of data elements, structures, and relations
denoted in and forming a relational database by the rela
tional database management system or by users thereof
Without requiring explicit and hardWare-dependent memory
management, though it also handles the relations manipu
lated by and in a relational database or by users thereof so
as to optimiZe query processing, table management, trans
action handling, and distributed or remote database mainte
nance.

2. Description of the Related Art
A Relational Database Management System (‘RDBMS’)

is a softWare system for creating, maintaining, and using a
Relational Database (‘RDB’). An RDB is a means for
representing data elements and operations on said data
elements via the relational model (or some variant on the
relational model such as the commonly available SQL
packages), Where the RDB as a Whole serves as a logical
model for the sub-portion of the real World instantiated in the
RDB. The RDBMS includes, among other elements, both a
System Catalog that contains the de?nitions of the logical
model as represented in the physical memory, and the
respective denotations thereof Which serve as symbolic
abstractions for the relations and constraints comprising the
RDB; and a Query Language Processing Engine for execut
ing relational request(s) Wherein said requests contain cer
tain alloWed processor operations. The alloWed processor
operations include logical operations (e.g. ‘AND’, ‘OR’,
‘NOT’) and relational operations (e.g., join, product, differ
ence, divide, intersection, restriction, projection, aggrega
tion, union, grouping, and partitioning); they may also
include mathematical operations, including both direct pro
cessor function calls and mathematical algorithms (e.g.
‘PLUS’, ‘SUM’, ‘AVERAGE’); and alloWed character, text,
and graphical operations (e.g. ‘NAME’, ‘CHART’) pro
vided for Within the RDBMS for data input, manipulation,
and output. The System Catalog and its contents are acces
sible to, and are often modi?able by, the Query Language
Processing Engine. System Catalogs are implemented in

10

20

25

30

35

40

45

50

55

60

65

2
various forms, as is Well knoWn to those familiar With the
art. For example, the System Catalog may be human
readable, compiled or otherWise embedded in programmatic
code, encrypted, stored as relations, may be static or active,
and so on. Either or both of the System Catalog and the
Query Language Processing Engine may be implemented
internal to the RDB, external to the RDB, or in some
combination of internal and external implementation.

There are numerous functionally equivalent symbolic
abstractions, Well knoWn to those familiar With the art, that
can be used for expressing and manipulating the semantics
of sets including, for example, those for set theory, predicate
logic, relational algebra, and relational calculus. A Set is a
collection of data elements, representable by and satisfying
a logical predicate (often referred to as a ‘membership
function’ or ‘membership criteria’), Wherein each data ele
ment belonging to a set shares at least one property that is
common to its set’s members, yet uniquely distinguishes
them from any other data element not belonging to that set;
and the logical predicate satis?ed by each member describes
the necessary and sufficient properties for belonging to that
set. An abstract symbolic expression such as a logical
predicate Which either fully or partially de?nes a set’s
members is referred to here as a Membership Abstraction.
The logical predicate contains one or more variable terms
(‘predicate variables’), each of Which may take values
pertaining a property of the set; and may contain one or more
constant terms as Well. Every element of a set is distin
guished by some property so that a particular element occurs
at most once in any particular set; every element is unique.
The Relational Database (‘RDB’) is a database Wherein the
data is organized into roWs (known formally as ‘tuples’)
Which are further grouped into Sets knoWn as Relations,
each said Relation having (either implicitly or explicitly) a
distinguishing property or properties grouping a Set’s ele
ments together and distinguishing them from non-members;
and the elements of the Set being the roWs of the Relation.
The standard instantiation of a Relation is a table. The
single-variable terms of the logical predicate pertaining to
the Set and Which the Relation represents each refer to a
shared property of the Set and are represented by a column
(also knoWn as an attribute) of the Relation; the number of
predicate variables in the logical predicate is the number of
columns in the Relation Which represents the Set. The values
Which a particular predicate variable may take Within a
variable term of the logical predicate are the permissible
values of the Relation’s column; that is, each column is
de?ned as taking the values of a particular ‘domain’ (a set of
values), and the value of a particular column in a particular
roW being exactly one such value. Multi-variable terms in
the logical predicate contain only variables that are each
individually represented by some column of the Relation.
The logical predicate must evaluate to ‘True’ on substitution
of each predicate variable therein With the corresponding
values in the columns of any particular roW of a Relation.
Relations typically have a time-varying membership; at any
given time only some subset of roWs belong to the corre
sponding Set of all those that might perrnissibly belong
given solely the terms of the logical predicate Whose Truth
or Falsity depend only on recorded values of data elements.
In order to capture the time-varying aspect of Set member
ship, the logical predicate may be considered as being
augmented With a special constant term called an ‘assertion
predicate’ by Which a suitably authoriZed user may assert
that a particular permissible member either does or does not
belong to the Set. A relational insertion operation thus
corresponds to identifying the set of Zero or more potential

US 7,263,512 B2
3

member roWs that satisfy some logical condition or condi
tions and setting the value of the assertion predicate to ‘True’
for these roWs; a relational deletion operation corresponds to
identifying the set of Zero or more member roWs that satisfy
some logical condition or conditions and setting the value of
the assertion predicate to ‘False’ for these roWs. In practice,
no RDBMS implementation of insertion and deletion opera
tions have been manifestations of relational insertion or
relational deletion as de?ned above; often the RDBMS
implements roW by roW modi?cations (including deletion,
insertion, or update) of the Relation; and the RDBMS offers
no explicit support for the assertion predicate.

The uniqueness of the roWs in the Set pertaining to the
Relation is determined entirely by the values in those roWs;
tWo roWs in a particular relation are not unique if the values
of corresponding columns are identical for every column
value. Each Relation is denoted by the RDBMS in a form
that serves as a symbolic abstraction that can be manipulated
via relational logic. In practice, most current RDBMS imple
mentations permit access and manipulation of ‘tables’ (the
standard instantiation of relations). Some tables are not
strictly Relations inasmuch as they permit duplicate roWs,
roWs that contain unde?ned property values (often desig
nated With special markers called ‘nulls’), roWs With dis
similar semantics, default values, and so on. The processing
of requests involving such tables is (1) less uniform than that
for Relations, (2) not prescribed by the relational model, (3)
may result in anomalous results not explicitly predicted by
the relational model, and (4) unique to the particular
RDBMS implementation.
A Relation is commonly knoWn to and represented Within

an RDB as a table having roWs and columns, and is a
particular type of Set Whose members are both roWs and
satisfy both (1) the logical predicate de?ning potential
membership in the Set and referencing no other sets, and (2)
the assertion predicate, a predicate asserting that those
members belong to said Relation (i.e., are actual, rather than
just potential, members of the Set). A Relation Predicate is
the logical predicate corresponding to a Relation and
describes the necessary properties for a roW to belong to the
Relation. All roWs having said necessary properties could,
but need not be, members of the Relation; While roWs With
the necessary properties are potential members of the Rela
tion, if and only if these potential members have also been
asserted to be members of the Relation by some suitably
authorized user of the RDBMS.

For example, an ‘Employees’ Relation might have col
umns for Employee Number (ENUM), Employee Name
(ENAME), Employee Salary (ESAL), and Employee
Department Number (EDEPT). The ‘Employees’ relation
Will have a Relation Predicate Emp(x) that stands for the
logical de?nition of the Relation; e.g. ‘Emp(x)’ means
thatz‘x is an Employee AND x has been assigned Employee
Number ENUM AND x has Employee Name ENAME and
x earns Employee Salary ESAL and x Works in Department
Number EDEPT’. The actual members of the ‘Employees’
Relation are those roWs that have been entered into the RDB,
and therefore both have the properties speci?ed by Emp(x)
and have been asserted to belong to the Relation ‘Employ
ees’. (Note that x is a symbol representing an arbitrary entity
commonly referred to as an ‘employee.’)

In practice, the Relations in an RDB are most often
de?ned implicitly, With roW membership in a Relation being
speci?ed on a combination of user assertion and satisfaction
of Constraints. Most RDBMS’s use Constraints to manage
their data. (Date & McGoveran, “HoW to Avoid Database
Redundancy”, Database Programming & Design, Vol. 7 No.

20

25

30

35

40

45

50

55

60

65

4
7, July 1994, p. 46, 48.) A Constraint is a condition that the
RDBMS tests against for a truth value; it is also a means for
ensuring the RDB’s integrity, as a Constraint is used to
‘constrain’ the RDB’s data and Relations to those permis
sible (according to the designers and builders) and according
the proper interpretation of the RDB’s meaning. Constraints
are de?ned, classi?ed (e.g., domain, column, roW, relation,
or multi-relation), enforced, maintained, and accessible to
the RDBMS. Each Constraint may be expressed as a logical
predicate or its equivalent, and so denoted Within the System
Catalog as a symbolic abstraction. Domain constraints are
used to determine Whether a data element belongs to a given
domain. (E.g. is the value represented a character? a num
ber? A computer distinguishes betWeen the numeral ‘1’ and
the number ‘1’, betWeen the letter ‘x’, a potential but
undetermined set member ‘x’, and a variable ‘x’ .) A column
constraint (also knoWn as an attribute constraint) requires
data elements Within a particular column to belong to a
speci?ed domain (i.e. valid entries are those possessing a
speci?c attribute; e.g. American salary values are in ‘dol
lars’). A particular relation constraint limits membership in
a particular Relation (all members of this Relation satisfy the
conditions of the constraint). And multi-relation constraints,
also referred to sometimes as ‘database’ constraints, are
conditions Which must be satis?ed by multiple relations. A
referential integrity constraint is a particular type of database
constraint. Within a transaction, RDBMS programs may
check to see Whether domain, column, and relation con
straints are satis?ed after each individual, subordinate opera
tion, but must check multi-relation constraints after all
operations on the referenced tables are completed (since a
failure after an intermediate operation might be corrected by
a subsequent operation on one of the referenced relations).
In practice, the combination of explicitly de?ned constraints
knoWn to and enforceable by the RDBMS is incomplete in
that it does not completely de?ne the membership of the
Relation, requiring a combination of extreme care on the
part of the user and external ?ltering of attempted updates
using, for example, application programs. In practice, errors
due to incomplete or inaccurate implementation of con
straints are common.

RDB designers and users could refer to the logical
description of a Relation Within the RDB by using a Relation
Predicate. (Date & McGoveran, “Updating Joins and Other
VieWs”, Relational Database Writings 1991-1994, Part II,
Chapter 6, pp. 267-284.) A Relation Predicate is a portion of
the logical predicate for the Set Which the Relation repre
sents, including all terms of that logical predicate excepting
the assertion predicate. A Relation Predicate properly
expresses the correct (as asserted by the RDBMS’s user)
interpretation of a relation; i.e. it is the expression of the
‘meaning’ of the Relation. By extension, it is the expression
of the ‘meaning’ of a table in that RDB insofar as the
meaning of that table may be made unambiguous. The
Relation Predicate Will join together the logical and rela
tional predicates that constrain the relation’s data, and alloW
the user to understand them. For example, a one-roW, three
column Table ‘Date’, With values ‘01’, ‘01’ and ‘02’ uses
three domain constraints (numeral, numeral, numeral), three
column constraints (month, day, year), and one relation
constraint (dates in the current century), to enable a proper
interpretation of these values as “Jan. 1, 2002”. At least that
Would be the interpretation until the year 2100, When the
default meaning could reasonably become “Jan. 1, 2102”.
The Relation Predicate for ‘Date’ can be expressed as ‘E(x,
y, Z), x is a member of Months, y is a member of Days, Z is
a member of Years’. ‘Months’ and ‘Days’ and ‘Years’ are

US 7,263,512 B2
5

domains having logical predicates that are further de?ned,
e.g., x is a member of domain Numerals & ‘l<q<:l2’; y
is a member of domain Numerals & ‘l<?/<:3l’; Z is a
member of domain Numerals & ‘1999<Z<2l00’. The Rela
tion Predicate for ‘Date’ might also include a set of con
juncts properly constraining the value of ‘Days’ according to
the value of ‘Months’, e.g. ifx:l then y<:3 l ’ & ‘ifx:2 then
y<:29’, and so on. Furthermore, the Relation Predicate for
‘Date’ might constrain the value of ‘Days’ according to the
values of ‘Years’ and ‘Months’ so as to account for leap
years, eg ‘if x:2 & Z modulo 4:0 then y<:28’. The logical
conjunction of these constraints de?ne the Relation ‘Dates’
and any data contained therein. In practice, no RDBMS
implements an algorithm for creating or capturing Relation
Predicates, extensions to the System Catalog to store Rela
tions Predicates, or means to use Relation Predicates for any
purpose.

In broad terms, an RDB is a logic-based model of truths
asserted about the real World, and the RDBMS is the means
Whereby that model, and its logic, is manipulated and
maintained Within the computer’s physical reality (and limi
tations). These truths include discrete, atomic, data elements
and combinations established by the RDBMS’s designers,
builders, and even users. The value of an RDB derives from
its capabilities for logic-based recombination and manipu
lation using the ‘relational model’ and Working With and
through Relations; that value is signi?cantly and negatively
affected by anomalous or non-uniform or unpredictable
behavior, and especially as regards updates or other opera
tions on relations.

Current RDB’s distinguish betWeen Base Relations and
Derived Relations. A Base Relation is one Where the
RDBMS maintains a direct corollary betWeen the physical
organiZation of the computer’s memory and the logical
organiZation of a Set’s elements. A Derived Relation is a
representation of a Set Whose members are logically derived
from, and represent a combination from, those members of
other Sets that further satisfy the logical predicate that both
details the necessary and minimal properties of the derived
Set; it Will also have (either implicitly or explicitly) both a
logical and relation predicate that distinguishes those ele
ments from others Which lack those necessary and minimal
properties, assertion of belonging to the Derived Set, or
both. In practice, a Derived Relation is de?ned by relational
and logical operations on other Relations, any of Which may
themselves be Derived Relations. A Derived Relation may
also consist of data elements Who are stored in physically
separated portions of the computer’ s memory. Derived Rela
tions may be any of several types, e.g., V1eWs (de?ned
beloW), materialized vieWs, ‘snapshots’, replicas, and query
results. Derived Relations are particularly valuable because
the assertion of belonging can arise implicitly though the
computer’s logical recombination and analysis of Base
Relations, rather than depending entirely on human input.

There are many Ways to combine the roWs and columns
of Base Relations. Also, a Derived Relation may be de?ned
or created via a relational expression that references any
combination of Base Relations, other Derived Relations, or
both Base and Derived Relations. In such combinations,
each of the referenced relations in the combined relational
expression is knoWn as a Source Relation for the combina
tion Derived Relation; the Derived Relation is sometimes
referred to as the Target Relation; and the Derived Relation
is Dependent upon its Source Relations. Most users, hoW
ever, deal not With the Base Relations as such, but Work from
and With their limited, often query-driven, report-driven, or
softWare application-driven vieW into a RDB.

20

25

30

35

40

45

50

55

60

65

6
A VieW is an named relational and logical expression

representing data that is made visible to the user in a form
that is usually different from the form of the Source Rela
tions and convenient to a particular use or uses, i.e. it is the
user’s ‘vieW into the relational database’s contents’. AVieW
has a Relational Predicate (and thereby expression in the
relational calculus, relational algebra, and predicate calcu
lus). A View can be understood as a ‘virtual relation’,
because the data belonging to a VieW need not be explicitly
stored in the RDB as a distinct table; in fact, a View may
represent one or more relational operations on a single
relation or on a plurality of relations. The data belonging to
a VieW is derived from data belonging to one or more other
relations When the VieW is manipulated by name in rela
tional expressions, and is transient in the sense that it does
not exist if the data belonging to those other relations does
not exist.

VieWs are one expression of a Derived Relation, as stated
above. VieWs differ from other types of Derived Relations in
that VieWs are named virtual relations With a storage
persistent de?nition (at least until the VieW is explicitly
destroyed or ‘dropped’) and so may be manipulated by
authoriZed users (other than the creator of the View) through
reference to that name in relational expressions and at
arbitrary times. A MaterialiZed View is a type of View; the
data as seen through the VieW is made storage-persistent and
modi?ed only When the Source Relations are modi?ed.

Most RDBMS implementations explicitly maintain and
track Dependencies (Whether (1) between relations or (2)
betWeen groups of columns of a relation), With these Depen
dencies de?ned, denoted as symbolic abstractions, and
accessible to the RDBMS. In practice, this is usually done
for relations as referential integrity Constraints, or VieW
Dependencies, but not betWeen non-vieW derived relations
and their source relations.

For example, the ‘Employees’ Relation (as de?ned above)
and a ‘Departments’ Relation (consisting of Department
Number DNUM, Department Name DNAME, and Depart
ment Manager’s Employee Number MNUM) might be Base
Relations. These tWo relations may be considered to be a
Base Set. From the Base Set individual relations can be
combined via relational operations to form one or several
Derived Relations. A Derived Relation called ‘Managers’
might be de?ned as consisting of columns Department
Manager’s Employee Number MNUM, Department Man
ager’s Name ENAME, and the Department Name DNAME
of the department managed by the manager. ‘Managers’ is
the result of performing a relational join of the ‘Employees’
and ‘Departments’ Base Relations, With the additional Con
straint that ‘MNUMIENUM’. ‘Managers’ is said to have a
‘dependency’ on both ‘Employees’ and ‘Departments’.

‘Managers’ might, for example, be a VieW. As a named
expression, its de?nition can be stored in memory and can
be reused by referencing ‘Managers’ even though the actual
roWs of ‘Managers’ are created only at execution time, and
are based on the then-current roWs in the Base Relations
(‘Employees’ and ‘Departments’). Alternatively, the de?ni
tion of ‘Managers’ might be an internal Derived Relation
representing a sub-step to a query asking to see all ‘Vice
Presidents’ Wherein the latter are de?ned as those Whose
employees are themselves all ‘Managers’; While ‘V1cePresi
dents’ is displayed to the user, the interim Derived Relation
of ‘Managers’ may Well not be. (Currently, most RDBMS
programs do not provide a Way to name the Derived Rela
tions that result from runtime query execution).

If the only relations Which users of a RDBMS (or com
puter programs) can access are Derived Relations, then these

US 7,263,512 B2
7

Derived Relations, either directly or indirectly, form the
linkage betWeen the physical location and structure in the
computer memory and the descriptive (as expressed, for
example, by the conceptual or logical schemas) location and
structure in the RDB, handled by the RDBMS. In practice,
an RDBMS most often predetermines a signi?cant portion
of physical location and structure in the computer memory
of Base Relations. If all operations (including access and
update) that are valid for Base Relations are likewise valid
for Derived Relations, the linkage attains maximum ?ex
ibility; it then permits modi?cation of the set of relational
expressions Which de?ne the set of Derived Relations in
such a Way as to leave the roWs and columns of each of those
Derived Relations unchanged, despite structural reorganiza
tion of the set of Source Relations (even When those Source
Relations happen to be Base Relations) so long as the
information necessary to the creation of those Derived
Relations is preserved. This property is knoWn as Data
Independence and it is intended to be a key value to
relational (as opposed to other) databases. It is also, hoW
ever, badly limited When Base and Derived Relations are not
handled in a uniform manner as, for example, When some
Derived Relations cannot be updated in the same manner as
Base Relations.
RDBMS programs have four fundamental functions that

are used to manage all data modi?cation operations on
relations; these are respectively Insert, Delete, Update, and
Retrieval. The ?rst three of these are used independently.
The Insert operation alloWs neW data to be entered into a
particular relation. The Delete operation alloWs existing data
to be removed from a particular relation. And the Update
operation changes one or more data elements Within a
particular relation. The fourth function, Retrieval, is used to
locate, manipulate, and produce the data in the RDB and
may be used either independently or in combination With
one of the other three. Other processing (logical, relational,
arithmetic, or transformational) may be used to further
facilitate changing data, its presentation to the user, or the
nature of the RDB. An RDBMS Which has Data Indepen
dence Will alloW any of these four functions to take place
Without the user having to be concerned With the physical
storage of the data or With the structure of the RDB. A
recogniZed major goal for all RDBMS designers, users, and
creators is increasing Data Independence.

Existing RDBMS programs alloW accessing some com
binations of derived data in static, report-only vieWs, and
alloW updating particular combinations of physically stored
data; but the current state of the art differentiates betWeen
base and derived relations, asserting, believing, or holding
that the latter are inherently not updateable. Also, existing
RDBMS programs are plagued by unpredictable and non
intuitive failures in updating derived data; these failures can
require a ‘rollback’ Which, if not performed correctly, can
leave the database in an inconsistent state. In practice, the
updating of derived data is generally avoided. Additionally,
because of this differentiation betWeen base and derived
relations, the creation, maintenance, and merging of mul
tiple physical databases, even When logically feasible, is
often pragmatically di?‘icult, costly, elfortful, infeasible, or
just deemed impossible.

Relational databases use data elements and the relation
ships betWeen them to model a portion of the World. In
practice, the data elements are organized at the logical level
into relations, and are perceived as such by the user. (Date,
An Introduction To Database Systems, 6th Edition, Addison
Wesley, 1995, Ch. 3, p. 52; Addison-Wesley; ISBNO-20l
54329-X.) The RDB does not integrate the denotation,

20

25

30

35

40

45

50

55

60

65

8
expression, and instantiation of a relation such that the
model is clearly linked both to the stored tables and the data
elements by means accessible to both the user(s) and the
RDB or RDBMS. A relation’s title (its denotation or refer
ent) is either chosen by the designer or created by the
system. Optimally, it should convey some meaning to the
user in the manner of a mnemonic. It may have come from
an entity-relationship modeling or CASE tool. It may consist
of some concatenation of source table titles according to
pre-set rules (eg the table combining EMPLOYEE and 401
K_PLAN_MEMBERS may be titled EMPLOYEEi40l
K_PLAN_MEMBERS). But the RDB and RDBMS cur
rently do not have a direct tie betWeen the relation, its title
or denotation, and the logical model, and the denotation is
not separably manipulable according to predicate logic as a
symbolic abstraction for the relation itself, or as a symbolic
abstraction of the manipulation of the data elements and
their combination therein. Moreover, constraints, rather than
being treated equally as logical predicates are generally
referred to simply as constraints, and they may have been
de?ned as relational expressions; they have usually been
separately maintained at the users discretion and as SQL
“relational” expressions that are used only to preclude
updates rather than enable them.

This distinction and lack of functional relationship
betWeen denotation (the title), expression (the title as name),
and instantiation (the data elements comprising the stored
table), prevents effective symbolic abstraction and requires
all logic-based manipulation to manage all of the individual
data elements, tying the RDB and RDBMS to the comput
er’s ability to manage its physical memory in Which those
same data elements happen to be stored and represented.

Furthermore, current relational database management
systems distinguish betWeen base and derived relations, and
base and derived data; that is, betWeen those relations or data
explicitly contained in the physically-demarcated memory
groupings denoted as the relational database’s ‘base tables’,
from those contained or expressed by temporary (often
query-driven) combinations of the base tables. These tem
porary combinations are knoWn as the relational database’s
‘derived tables’. (Certain derived tables are also commonly
referred to in the literature as ‘vieWs’ .) This is a self-imposed
handicap the ?eld has failed to recognize, due in part to an
earlier theoretical error.

This distinction limits an RDBMS’s capability to update
derived tables (relations or data); limits users’ access to
derived tables; and can create problems (in the form of
dif?cult, memory- or processor-expensive transactions, or
unintended or unpredictable results) for those RDBMS that
try to access or update derived tables (some do, some just
don’t). This distinction also can cause a RDBMS to use extra
memory in duplicating base data elements inside multiple
tables. Existing methods to manage updates or access to
derived tables can create potentially contradictory data sets,
creating major problems for the RDBMS and potentially
rendering the RDB itself unreliable.

Furthermore, distinguishing betWeen ‘base’ and ‘derived’
tables (and therefore base and derived relations) means that
no such RDBMS permits full data independence betWeen a
data expression and the memory location corresponding to
its physical storage, or uses uniform semantics With all
operations, including derived as Well as base data expres
sions. An RDBMS possessing full logical data independence
is one in Which (I) the descriptive representation of the data
in the database can be changed to accommodate additional
types of data, supporting neW programs that Will use that
data While still maintaining the existing descriptions for

US 7,263,512 B2
9

previously-existing programs and users; and, (2) multiple
descriptive representations can be provided, each special
iZed for a particular group of users or programs, each
Without implying any need to alter existing elements of
physical storage subject to the constraint that all represen
tation changes are information preserving. The lack of full
logical data independence in turn creates problems With
merging relational databases, distributing a relational data
base over multiple locations, and handling multiple versions
of a relational database (either over time or locations sepa
rated by message time), Which means that users often ?nd
neW versions of a relational database become non-back
Ward-compatible With the pre-existing version, Which
defeats one of the principal goals of using a relational
database. Furthermore, the lack of uniform semantics for
both base and derived relations can cause failures to certain
updates, creating extra relational database system mainte
nance and requiring rollback of transactions.
FeW existing RDBMSs provide means to update derived

relations; those that do, do so only for an arbitrarily
restricted feW derived relations (Date & McGoveran,
“Updating Union, Intersection, and Di?ference VieWs”,
Database Programming & Design, Vol. 7 No. 6, p. 46).
These means for updating derived relations are very restric
tive, are tied to the physical memory usage of the RDB, are
inconsistent With those used for base relations, and their use
often results in error messages sent to the user of the
RDBMS. Users compensate for these restrictions by avoid
ing the use of derived relations, developing programs to
provide update of speci?c derived relations, or through
manual Workarounds. For example, IBM’s DB2 and Ora
cle’s Oracle 91 RDBMS products do not permit update of
any derived relations (speci?cally Views) When the update’s
SQL uses the SQL keyWords ‘DISTINCT’, ‘GROUP BY’,
or ‘ORDER BY’. There are many other restrictions on
updating vieWs such as those that are derived via relational
aggregation and UNION. Only a subset of those vieWs
derived via join operations can be updated by Oracle; DB2
does not support join vieW updates at all.
No RDBMS products support general update of all non

vieW derived relations, though some provide partial update
support of materialized vieWs, snapshots, or replicas. And,
for those Which provide some support, that support is
extremely restrictive. Despite the need, there are no RDBMS
products providing a common and intuitive method by
Which all relations (base and derived) can be updated (Date
& McGoveran, “HoW old Data Redundancy”, Database
Programming & Design, Vol. 7 No. 7, p. 46, July, 1994; Date
& McGoveran, “Updating Joins and Other VieWs”, Database
Programming & Design, Vol. 7 No. 8, p. 43, August 1994).
Since all RDBMS implementations distinguish betWeen
updating base and derived relations, users must learn the
particular behavior of the RDBMS for each type of derived
relation, and must be aWare of and can easily determine
Whether or not a particular relation that they Wish to update
is a base relation or a derived relation; and this restriction
further violates logical data independence and forms an
impediment to physical data independence.

Additionally, treating base relations as stored tables pre
vents attaining a major goal of physical data independence,
that of separating Where and hoW a table is stored from
manipulating the logical representation for the table’s
instantiation. Symbolic abstraction of the logical represen
tation and user requests into relational predicates alloWs for
rapid logical manipulation to be separated from the mechan
ics of managing the physical memory, Which otherWise limit
the speed and poWer of the RDBMS. Currently, an RDBMS

20

25

30

35

40

45

50

55

60

65

10
at best clumsily handles its oWn internal representations,
lacking means for symbolic abstraction of the model to
Which it has been designed and built, and Which it uses. The
lack of such abstraction being available to the RDBMS
increases the RDBMS’s di?‘iculty in distinguishing betWeen
errors caused by logical inconsistencies, data errors, and
memory limitations.
As no RDBMS maintains Relation Predicates for the

relations or tables in its system catalog, separating out
logical and data processing (eg for optimization purposes
alone) is dif?cult. Although almost every RDBMS provides
support for using constraints in managing and enforcing the
consistency of an RDB, no RDBMS uniformly and consis
tently maintains constraints in its system catalog as Relation
Predicates, and makes them accessible to the RDBMS or
readily apparent to users. Users, Who Would bene?t from
having a uniform method by Which to understand the
meaning of a table When a particular constraint is applied to
that table, are thus liable to misinterpret the data in a table,
to access a table With a different meaning than the one
intended, or to use a table in a manner inconsistent With its
meaning. Each of these may lead to corruption of data When
the RDB is subsequently updated, or may cause the user to
make incorrect business decisions.

Although SQL uses expressions involving predicates for
access and update of relations, no RDBMS provides a
uniform and consistent method of accessing or updating
relations, in Which the semantics or meaning of that access
or update is based on and expressible in relational predi
cates; these might be referred to respectively as an ‘Access
Predicate’ and an ‘Update Predicate’. Use of such an
‘Update Predicate’ Would also help ensure consistency and
ease maintenance for both the RDB and RDBMS, particu
larly if these Were both contained Within the scope of, and
accessible to, the RDBMS. The operations of the RDBMS
Would be easier to maintain, optimiZe, or track if there Were
means for classifying portions of an ‘Update Predicate’ into
one or more relational expressions, each of Which either (1)
constrains the logical consistency or other effects of the
update action, or (2) restricts the data that is to be affected
by the update operation, for this classi?cation Would help
determine hoW the RDBMS Will manage the update.
The continued linkage betWeen physical location in com

puter memory and descriptive location in the database by the
database system, such as found in IWata, K. et. US. Pat. No.
4,514,826, and Matsuda, S. et. al. US. Pat. No. 5,247,665,
is an approach that, because it is based in Whole or in part
on information Which the RDBMS does not explicitly have
access to (an implied structure created and maintained by the
administrators, the terms of Which are either inaccessible or
meaningless to the RDBMS), prevents any RDBMS from
attaining either physical data independence, in Which the
descriptive representation of the data in the database is freed
from machine-speci?c and non-database terms and pro
cesses, or logical data independence.
The limited perception that uniqueness properties can be

determined for a database Was explicitly limited to a l-tuple
condition in Leung, T. et. al. US. Pat. No. 5,615,361,
because of the separation betWeen a binding explicitly
determinable from the database system and that Which is
actually present in the database’s structure. This prevents the
user from making changes to the structure, organiZation, or
contents of the database except through indirect database
system administration, hinders the database’s actual capa
bility to effectively model the information contained Within
it, and limits the capacity to manage dependent relations or
v1eWs.

US 7,263,512 B2
11

Much of the problem encountered by most RDBMS in
handling large databases has been the presence of ‘null’
elements and columns required by any method that does not
effectively manage the data to limit unnecessary duplication,
due to the inherent limitations of an implicit and non
represented structure. The opportunity for improving data
base system performance identi?ed in Leung, T. et. al. U.S.
Pat. No. 5,590,324 by exploiting column nullability is just a
faint harbinger of the improved administrability, perfor
mance optimiZation, and prevention of update failures that
can be obtained When logical data independence can be
guaranteed. In many cases, support for logical data inde
pendence mitigates or removes the need to support column
nullability, and therefore lessens and may even eliminate the
need for special optimiZation techniques such as those
identi?ed therein When column nullability is supported by
the database system.

The apparatus-speci?c approach in Huber, V. U.S. Pat.
No. 4,918,593 for maintaining dependence is explicitly
limited to certain derived columns of base tables. It makes
neither provision for derived tables nor discusses any gen
eraliZable method independent of the speci?c data dictionary
means for maintaining dependence betWeen tables. The
present invention makes use of dependence betWeen tables,
and need not be maintained via any particular data dictio
nary means. Huber makes no claim pertaining either to data
independence or to a general method for updating relations.

The value of separating logical and physical data struc
tures is evinced in Kingberg, D. et. al. U.S. Pat. No.
5,734,887, Which fails in its approach to free itself of the
need for explicit tables, for both mapping the logical to
physical combinations and the explicit joins betWeen logical
entity types and the physical tables and columns under them.
It further fails to make the means for such mapping or the
representation explicitly accessible to the RDBMS. King
berg requires the use of a ‘logical data interface’ for access
to base relations from application programs Without explic
itly referencing those relations; the approach does not pro
vide a method for updating derived relations.

Only by using an extra stage of providing a completely
separate and independent object model does KaWai, K. U.S.
Pat. No. 5,717,924 manage to provide a link betWeen a
relational database schema and an object model for the
information contained Within the database schema. Addi
tionally, the stages of managing and administering any
modi?cations to the database schema are not explicitly
described in a fashion that uses the logical structure of the
schema, and the constraints and processes contained by the
relational database system, to manage the modi?cations
directly.
A different approach to the concept of managing relation

ships amongst base tables, one that consumes additional
memory resources and requires additional programming and
data entry, is speci?ed in Olson, M. et. al. U.S. Pat. No.
5,566,333. Olson requires a distinct linker table, does not
modify relational database or its contained data, and does
not address the problem of updates.

Pitt, J. et. al., U.S. Pat. No. 5,493,671, explicitly dupli
cates the entirety of any merged data, and deals solely With
data type differences by direct conversion according to
preset means rather than any methodology contained Within
an RDBMS.

The desirability of alloWing logical access, independent
of knoWledge of the structure of the physical database, is
addressed in Maloney, C. et. al. U.S. Pat. No. 5,701,453.
Maloney is limited to table pairings, and the use of explicitly
overlapping ?elds, rather than being generalizable either to

20

25

30

35

40

45

50

55

60

65

12
logically possible combinations or to any representation
explicitly available to the RDBMS.
The value of dynamically displaying and updating data is

mentioned in Vanderdrift, R. Us. Pat. No. 5,455,945; hoW
ever, in that method the accessible data is limited to the
primary or base records, is not derived from any logical
representation of the database, and does not use the logical
constraints and representations of the database but rather
depends upon the creation of explicit management records
and memory pointers, and tracing them as necessary, thereby
increasing the complexity and memory requirements for the
system rather than lessening them through symbolic ab strac
tion. Moreover, the method therein does not provide a
method Which is consistent over data, relations, and con
straints; instead, it distinguishes betWeen a ‘management
record’, a function, a ?lter, and a ‘DD’ (display and orga
niZation rules). And the method neither makes the method
accessible Within and to the RDBMS, nor uniform across
data types, nor separate manipulating the data, functions,
and records from preliminarily manipulating the logic to
determine Whether and hoW the changes are feasible.
The method identi?ed in Horn, G. et. al. U.S. Pat. No.

5,226,158, may assist in determining the validity of a
particular constraint; hoWever, it does nothing With such
validity or the constraint itself. Nor does the method therein
alloW for generalization to means for consistently managing
base tables, derived tables, and constraints, as Well as any
particular constraint.

RevieW of Certain RDBMS Mechanisms
There are many methods in the art by Which RDB updates

have been implemented. Relational updates are set transfor
mations, as contrasted With roW or record modi?cations.
This fact implies that updates are atomic, i.e., an unrecov
erable error of any type requires that the entire update be
aborted. Typically, updates are applied in the context of a
transaction so that atomicity is insured by a transaction
manager or some equivalent softWare component. The usual
method by Which either relational update or transaction
atomicity is insured is to make all updates to a copy of the
data, leaving a copy (knoWn as a ‘before image’) unmodi
?ed. If an error occurs, the un?nished modi?cations can be
discarded and the RDB restored to its original condition
using the before image. If the update completes successfully,
the modi?ed copy (knoWn as the ‘after image’) can be used
to replace the before image. This technique is often used in
a nested fashion so that each update Within a transaction has
a corresponding before image and after image, as does the
entire transaction. Regardless of the particulars of transac
tion management, the illusion is given that the entire data
base is transformed from the publicly available version of
the data (before image) through a sequence of private after
images (each generally hidden from other users) until the
transaction completes. If it is successful, the ?nal after
image produced becomes the publicly available version of
the data. In practice, there may not be a physical after image
or before image, but only the appearance of one. Many
variations on the method of transaction management exist,
but are functionally equivalent to the one described here. See
Date, An Introduction to Database Systems, supra, for a
more detailed explanation. The after images of tables modi
?ed by a transaction are often checked prior to completing
the transaction to determine consistency. Such constraint
checks may require reading other tables that have not been
modi?ed (i.e., have no after image) Within the context of the
particular transaction.

Methods for processing a request, Whether a data retrieval
or a data modi?cation, are generally referred to by the term

US 7,263,512 B2
13

‘query processing’. The literature pertaining to query pro
cessing in an RDBMS is extensive and includes subtopics
such as query parsing, internal query representation, opti
miZation, and physical data access methods. A common
internal query representation technique is knoWn as a query
tree, in Which data access methods form the leaves of the tree
and successive nodes represent operations on the (possibly
intermediate) data. Operations are typically either unary or
binary, this being suf?cient to represent all relational opera
tors. Every relational request and every predicate formula
can be represented by such a query tree as can the de?nition
of every relational vieW, since a relational vieW is de?ned as
a named retrieval operation on one or more relations.
A common and Well-known technique for processing a

retrieval involving a vieW is to combine the query tree
representing the retrieval With the query tree that represents
the vieW de?nition. In order to use the technique, the
RDBMS must maintain dependency information in its Sys
tem Catalogithat is, information Which relates the vieW to
the relations on Which its de?nition depends. Because a vieW
may be de?ned in terms of relational operations on other
vieWs as Well as base tables, this dependency information is
mo st naturally stored in the form of a ‘dependency tree’ With
leaf nodes representing base tables and nodes above them
representing derived tables. Numerous data structures have
been used for storing dependency information, many of
Which are equivalent to dependency trees in the sense that
they are capable of storing precisely the same information
but differ in the algorithms used to process that information.
Some may contain information in addition to dependency
information. Dependency trees are often used to process
requests involving vieWs, including modi?cation requests.
Most implementations provide only limited support for vieW
modi?cation requests. Furthermore, most implementations
use dependency information to propagate modi?cation
requests as if they pertained to individual roWs of the vieW,
or to substitute the de?ning retrieval in place of each vieW
reference so that the request ultimately attempts to modify
only base relations. This Well-known direct substitution
technique, and its equivalent methods, result in valid modi
?cations only for certain types of vieWs and such RDBMS
implementations typically restrict vieW updates to those for
Which it is knoWn to be valid.

The meanings of objects in an RDB (domains, columns,
roWs, base relations, and derived relations) in an RDBMS
are most frequently maintained through methods that are
distinct from both the maintenance of the RDB (such as the
creation of relations and vieWs) and the processing of
requests. For example, object naming conventions, separate
data dictionaries, “help” systems, and the like may exist that
permit the capturing of object de?nitions, each of Which
requires manual steps to create and maintain that are distinct
from those steps used to create or modify the object. Such
de?nitions are typically human readable, are not used by the
RDBMS in processing requests, and over time diverge from
an accurate representation of their corresponding opera
tional de?nitions. All too often, RDB creators and users rely
upon object naming to convey meaning, a practice that is
unreliable, inef?cient, and cannot be used by the Query
Language Processing Engine.

Brief Summary of Current Literature in the Field
Research into the problem of updating derived tables has

been limited because of a theoretical misapprehension. One
of the theoreticians, in 1988, claimed to have proven that
updating vieWs Was potentially impossible, or at least that
any method that claimed to Work for all vieWs Was subject
to an unpredictable failure. Bulf (“Why Codd’s Rule No. 6

20

25

30

35

40

45

50

55

60

65

14
Must Be Reformulated,” ACM SIGMOD Record 17:4,
1988) stated a theoretical proof that a general algorithm for
deciding Whether or not a vieW is updateable is undecidable
Within the predicate logic. This paper has been the dominant
and most serious barrier to investigation of the problem of
a general algorithm for updating vieWs, let alone arbitrary
relations. HoWever, as Bulf does not provide a proof of
impossibility Within the relational algebra, nor shoW that the
relational algebra and the predicate logic are equivalent, he
therefore does not address the embodiment of the invention
of this application. Also, Bulf never considered those limited
implementations of the relational algebra Which are neces
sary to reduce the relational model to practice on physical
computers; instead, his paper considers solely the pure
mathematics for abstract, theoretical algorithms.
One of the co-inventors Was previously so persuaded of

the non-updateability of vieWs by E. F. Codd (The Relational
Model for Database Management Version 2, Addison-Wes
ley, 1990), in Which the author referenced his unpublished
algorithm (VieW Updatability in Relational Databases:
Algorithm VU-l, unpublished, 1987) for determining
Whether or not a vieW might be theoretically updateable. The
referenced algorithm Was not, and has not been, reduced to
practice, and did not provide any method by Which arbitrary
vieWs could be updated. Furthermore, Codd does not teach
that all vieWs are theoretically updateable, nor does he
provide a method by Which arbitrary or even speci?c vieW
updates are to be achieved. Also, the vieW updates Which
Codd does describe involve roW operations and do not
preserve the set semantics of relational operations.

Dayal and Bernstein (“On the Correct Translation of
Update Operations on Relational Views”, ACM TODS 7:3,
1982) provided a formal treatment of vieW updating rules for
restriction, projection, and join vieWs only. They did not
provide a general method for updating vieWs or arbitrary
relations.

Keller (“Algorithms for Translating VieW Updates to
Database Updates for VieWs Involving Selections, Projec
tions, and Joins”, Proc. 4th ACM SlGACT-SIGMOD Sym
posium on Principles of Database Systems, 1985) presented
criteria for algorithms that Would implement a limited class
of vieW updates, and multiple algorithms Which satisfy those
criteria. A single, general purpose method Was not presented
(or suggested as even possible), and the semantics of the
update operation are not propagated to the base relations.

Nathan Goodman (“View Update is Practical”, lnfoDB
Vol. 5, No. 2, 1990) proposed that the user, in de?ning a
vieW, be provided With a means for also specifying vieW
speci?c methods of updating. No attempt Was made to
provide a method by Which arbitrary vieWs can be updated;
the problem of updating derived relations other than vieWs
is not discussed. Goodman did refer to Well-known methods
of updating a feW particular types of vieWs using type
speci?c methods Which he recognized as not generaliZable.
He also identi?ed types of vieW Which he contended
required user-de?ned and type-speci?c methods for updat
ing, denying the possibility of a generalized algorithm.

Since the Nathan Goodman article, most of the literature
on “vieW updating methods” refers to the propagation of
updates from one or more source relations to a physically
stored derived relation, and hoW to most ef?ciently manage
physical aspects of this operation. This has generally been
referred to as the problem of updating or managing ‘mate
rialiZed vieWs’. It does not address the problem of updating
a derived relation and then propagating the appropriate
changes to the source relations; therefore, this body of
literature does not bear upon this application.

US 7,263,512 B2
15

The ANSI (American National Standards Institute) has
published a standard for the syntax and some semantics of
the SQL query language; this query language is the one
Which almost all RDBMS products support. The current
(and forthcoming) version of the ANSI SQL standard states
explicitly that expressions involving updates of vieWs are
not legal expressions in the language except in a limited
number of speci?c cases. The semantics described for updat
ing those limited types of vieWs are, in general, inconsistent
With the semantics of updating base relations, resulting in a
surprising and non-intuitive behavior from the perspective
of users. RDBMS products that support SQL have been
required by market pressure to support the syntax and
semantics de?ned in the ANSI SQL standard; the ANSI SQL
standard has been and continues to be a barrier to developing
(let alone implementing) approaches for general vieW updat
ing.

C. I. Date (An Introduction to Database Systems, 7th
Edition, Addison-Wesley, 2000, Ch. 9, p. 297-325) describes
separate updating procedures for each of certain types of
vieWs, but fails to introduce a general approach to updating
all relations, Whether base or derived; the possibility of
updating certain types of vieWs is explicitly denied. Also,
Date provides separate procedures for various types of
updates (for example, insert, delete, or modify). The limits
on vieW updatability imposed by the ANSI SQL standard
mentioned above are discussed, Which may further have
seemed to validate a mistaken belief in the non-updateability
of vieWs.

There is a need for maintaining and tracking, preferably
by a symbolic abstraction such as by means of relation
predicates, the relationships or dependencies among a
derived relation and its source relations, so When a source
relation is changed the derived relation is also updated. Also
needed is a means to derive a relation predicate for a derived
relation from the combination of relation predicates for its
source relations, predicates for constraints on those rela
tions, and the predicates for the relational operations on
source relations used to de?ne the derived relation; once
derived, it Would be further desirable to make the same
accessible to the RDBMS and its programmers or even
users. Also desirable Would be means to decompose a
relational expression involving a derived relation into a
logical combination of one or more relational expressions,
each of Which is either a relation predicate of a source
relation or a predicate corresponding to a constraint on one
or more source relations. Such means should permit succes

sive decomposition of a relational expression, so When the
result of one step of decomposition generates one or more
relational expressions that themselves involve a derived
relation, each of these is further successively decomposed,
leading ?nally to a logical statement Whose every element is
either a relation predicate of a base relation or a predicate
corresponding to a constraint on one or more base relations.

What is needed is a common and uniform method that can
(i) provide uniform symbolic abstraction of data, relations,
and constraints comprising an RDB managed by an
RDBMS, (ii) alloW both users and the RDB and RDBMS to
use the most effective of either logical manipulation of the
symbolic abstractions or manipulation of the same symbolic
abstractions’ instantiation to reason With and manage data
elements and relations, and (iii) provide access to or an
update on an arbitrary relational expression as a symbolic
abstraction and thence on the physically-embodied data and
relations for Which the symbolic abstraction stands, Whether
the data and relations referenced by that expression are
vieWs, other types of derived relations or base relations.

20

25

30

35

40

45

50

55

60

65

1 6
SUMMARY

The present invention is directed to a method that satis?es
this need (de?ned in the preceding Background section). The
method describes hoW a relational database management
system can create and maintain relation predicates; and
access and update vieWs and relations in a relational data
base through symbolic abstraction and Without having to
distinguish betWeen base and derived data; the method
thereby providing, to both the RDBMS and user, for derived
tables and data the same access and updating capabilities
currently provided for users or designers for base tables and
data.

The embodiment of the invention explicitly (that is,
Within and accessible to the relational database management
system) catalogues denotations, Which are symbolic abstrac
tions With meaning for both the user and the RDB and
RDBMS, Where the denotations are descriptions of the
instantiation of data elements, relations and constraints
managed by the system. These denotations are expressed
and manipulable as relation predicates. The embodiment
further explicitly makes these relation predicates part of,
accessible to, and manipulable by the relational database
management system, rather than merely inherent in the
relational database’s structure and the separately-pro
grammed rules managed by the relational database manage
ment system.

The embodiment further tracks dependencies for all
derived relations, processes relational operations on the
RDB through relational predicates, and links and queues
validity constraint checks run by the RDBMS to resolve at
the appropriate time, all separately from any physical,
environmentally-dependent, computer and hardWare man
agement concerns.

This embodiment of the invention enables maximum
?exibility, minimum maintenance, and highest performance
for any relational database management system incorporat
ing it. It also frees users and relational database management
systems from many of the dif?culties of accessing and
updating derived tables, and makes such access and updat
ing predictable. If the design of the database is consistent
With the strict de?nition of relations as speci?ed by the
relational model, it also guarantees that such access and
updating is consistent With the relational algebra and hap
pens in an intuitive manner. This embodiment of the inven
tion furthermore leads to a minimal use of physical memory
by a RDBMS by eliminating logically-unnecessary dupli
cation of base data elements. (Security, communication, or
hardWare requirements, concerns beyond the scope of the
relational database management system though it must cope
With their speci?c implementation, may still drive some
duplication.) This also creates, in the preferred embodiment,
provable, full data independence betWeen data and its physi
cal storage for any relational database management system
incorporating the embodiment of the invention, and provides
uniform semantics for operations on base, derived, or com
mingled base and derived tables, and data. It further pro
vides improved consistency, maintainability, data integrity,
and recoverability of single or distributed relational data
bases, and ?nally provides a Way to minimize relational
database management system maintenance and eliminate
update-caused rollbacks.
The brief summary of the invention is provided so that the

nature of the invention may be readily comprehended. A
more precise and fuller comprehension may be obtained by

US 7,263,512 B2
17

reference to the following detailed description of the inven
tion in connection with the appended and associated draw
ings.

DESCRIPTION OF THE SEVERAL VIEWS OF
THE DRAWINGS

FIG. 1 is an abstraction of a computer system incorpo
rating the preferred embodiment, with processing, memory,
input/output, and software sub-systems and means.

FIG. 2 is an instantiation of an RDB and RDBMS, with
subordinate features belonging to the latter of a System
Catalog (SC) and Query Language Processing Engine (QE).

FIG. 3 is a more detailed view of the System Catalog, with
tables to store RDB details, including constraint de?nitions
for domains, columns, tables, and the database (i.e., multi
table constraints), Relation Predicates (RPs), Dependency
Trees, and operation authoriZations (‘SF’).

FIG. 4 is an example of a relation expressed as a table.

FIG. 5 is a ?owchart of the main steps of the method
detailed below.

FIG. 6 is an example of an update operation in the
preferred embodiment.

DETAILED DESCRIPTION OF THE
INVENTION

The method described in the claims below works for and
in a Relational Database Management System (‘RDBMS’),
running on a computer having memory, a processor, and
input and output means. An RDBMS is a software program
that runs on the computer, using the latter’s memory and
processors for physically storing and manipulating data, and
using the latter’s input and output hardware for translating
between physical and logical representations and back
again. This software program includes an RDBMS as
described in the previous sections.

Implementation

This embodiment of the invention may be implemented in
a single computer, a distributed computer system, or in an
embedded-chip. The preferred embodiment comprises one
or more software systems designed for an SQL-based RDB
and RDBMS, containing a System Catalog (SC) and Query
Language Processing Engine (QE). Alternative embodi
ments implement either or both the SC and QE, or the entire
invention, external to the RDBMS, or in any internal or
external combination. In this context, a software system is
one or more software programs and associable hardware

memory (random-access, dynamic, static hard disk or disk
array). A software system should be understood to comprise
a fully working software embodiment of one or more
functions, which can be added to an existing computer
system (to provide new or improved functionality) or to a
new general computer system (to provide a special function
computer system with the software system’s incorporated
functionality). Software systems are generally layered, as
are RDBMS. The lowest layer generally is an operating
system (‘OS’) that manages hardware operations. Additional
layers may provide speci?c computational or processing
functionality, a graphical user interface, speci?c input/out
put capability for particular scienti?c or data acquisition or
display hardware, or inter-system communication and shar
ing capability (i.e. WAN, INTERNET, or non-wire-based,
communications). These software systems provide a foun

20

25

30

35

40

45

50

55

60

65

18
dation on which additional software systems can be built or
changes made to the current set.
A software system can thus be understood as a software

implementation of a function which, when added to or
included within a computer, provide new, speci?c function
ality to a general-purpose tool. The software system for this
embodiment of the invention may be distributed by com
puter-usable media such as diskettes, CD-ROM or DVD
disks, or electronic signals over a remote connection (i.e.
downloaded over INTERNET-based electronic distribu
tion). Also, it should be understood that the interface
between one software system and another meant to work
with it should be well-de?ned and shared, and it should be
understood in the context of this embodiment of the present
invention that delineations between software systems (eg
RDBMS from RDB from OS) are representative of the
preferred embodiment. However, the invention may be
implemented using any combination or separation of soft
ware systems and hardware.
The preferred embodiment of the invention comprises a

set of software systems for accessing and updating relations,
both base and derived, in a relational database. A single
computer system incorporating the preferred embodiment is
shown in FIG. 1, which includes a central processor 1,
connected by means of a bus 3 to read only memory
(‘ROM’) 5, random-access memory (‘RAM’) 7, and static
memory 9. The static memory may comprise any of the
following, alone, in combination, or their functional equiva
lent: hard disk, disk array, ?ash memory, bubble memory,
chip-based memory, magnetic tape, optical disk. When the
computer is operating the method will be part of the software
systems (including the RDB and RDBMS) stored in RAM
and static memory depending on the operating system’s
memory management. The computer system in FIG. 1 is also
connected to both an output system, which comprises at least
one display 11 or other output device, by which the com
puter presents information to the user, and at least one input
system 13, which comprises at least one or more devices by
which data is input to the computer, which may include but
are not limited to: a keyboard, a mouse, a pointing device,
a voice sensor, a graphic input tablet, a touch screen, a touch
screen overlay, a joystick, a track ball, a light pen, a
scienti?c data sensor, or a numeric keypad. In computer’s
memory are the RDB 15, RDBMS 17, and software imple
mentation of the method 19.
The computer system contains at least one RDB and

RDBMS (FIGS. 2, 21 and 23, respectively); to be useful, the
RDB must be ‘populated’ (i.e. having data elements entered
and relationships de?ned). The RDBMS contains an SC 25
that describes operations, elements, contents, and/or struc
ture of the RDB accessible to the RDBMS, and a QE 27 that
de?nes operations perforrnable within the RDBMS. In the
preferred embodiment (FIG. 3), the SC includes tables 29
which store, for example, constraint de?nitions for domains,
columns, tables, and the database (i.e., multi-table con
straints), Relation Predicates (RPs) 31, and Dependency
Trees 35 which de?ne the dependencies between Derived
Relations and their Source Relations, in addition to those
which contain de?nitions of the physical and logical orga
niZation of those objects and operation authorizations (‘SF’)
37, to protect against unauthorized or inadvertent alteration.
The SC may be fully integrated within the RDBMS, may be
a user supplied augmentation of an existing SC, or may be
a facility external to the RDBMS (as, for example, external
data ?les, data dictionaries, information embedded in pro
grams, and so on, along with means to use the information
contained therein in an appropriate manner with the

US 7,263,512 B2
19

RDBMS). The QE accepts requests in one or more query
languages (e.g., SQL) via either user input or programmatic
interface. When a Relation (an example Relation is shoWn in
FIG. 4) is created or modi?ed (e.g., by adding a constraint),
the RDBMS derives and stores the resulting RP in the SC.
When a Derived Relation is created, the QE creates and
stores a Dependency Tree along With the de?nition of the
Derived Relation in the form of both query language text and
the query tree.

20
relational operation by Which the Derived Relation is
formed. It does not include any multi-relation constraints
that reference a relation not involved in the relational
operation by Which the Derived Relation is formed. Just as
arbitrarily complex Derived Relations can be formed by
successive combination using multiple relational operations,
the corresponding Relation Predicate can be derived by
successive application of the de?nitions or “reWrite rules” in
Table 1.

TABLE 1

RELATIONAL RELATIONAL LOGICAL MULTI-RELATION
OPERATION EXPRESSION EXPRESSION CONSTRAINT

PRODUCT R2 PRODUCT R3 PR2 AND PR3
RESTRICT R2 RESTRICT P5 PR2 AND P5
PROJECTION R2 REMOVE COL-A *PR2[<all terms EXISTS(R2.COL-A)

involving COL- AND <all multi-column
A deleted>] constraints involving

R2.COL-A>
UNION R2 UNION M PR2 OR PR3
DIFFERENCE R2 MINUS M PR2 FORALL R3,

PM AND NOT

(EXISTS R2 = R3)
<applied to tuples in
R2 and R3>

INTERSECT R2 INTERSECT R3 PR2 AND PR3
EXTEND EXTEND R2 ADD P5 AS PR2 AND P5

‘NAME’
‘AGGREGATE’ SUMMARIZE R2 BY PR2 AND FORALL R2.COL-A,

(COL-A) ADD P(‘NAME’) R4.NAME =
‘AGGREGATE’ (COL-B) ‘AGGREGATE’
AS ‘NAME’ (R2.COL-B) AND

R4.COL-A =

R2.COL-A

This invention can be implemented entirely Within the
RDBMS or, in the alternative, may be separable and inter
face With the RDBMS. This separation could take any of a
number of forms, With the method being a front end to the
RDBMS, a gateWay that sits betWeen the RDBMS and the
user or application seeking to access the RDB, or as an
augmentation to the RDBMS that is invoked from and by the
RDBMS (via triggers, exits, hooks, APIs, and the like).

OvervieW of Creation and Maintenance of Relation Predi
cates

A Relation Predicate for a particular Base Relation con
sists of the logical conjunction of the folloWing:

each domain constraint over Which an attribute (column)
of the Relation is de?ned;

each column constraint pertaining to an attribute of the
Relation;

each roW constraint pertaining to roWs of the Relation;
and,

each multi-roW constraint pertaining to roWs of the Rela
tion.

A Relation Predicate for a particular Derived Relation,
Where that relation is derived via relational operations
(restriction, projection, join, union, etc.) on one or tWo other
relations, is de?ned in terms of the Relation Predicates for
those one or tWo other relations as speci?ed in Table 1
below. (In Table 1, R1, R2, R3, and R4 are arbitrary
relations; PRl, PR2, PR3, and PR4 their respective Relation
Predicates; and *PR2 is PR2 With speci?ed modi?cations.
Also, P5 is an arbitrary Well-formed predicate, ‘AGGRE
GATE’ is any valid aggregate operation, and ‘NAME’ is an
arbitrary column label.) The Relation Predicate includes as
conjuncts any independently de?ned multi-relation con
straints that reference only the relations involved in the

35

40

45

50

55

60

65

A number of less-preferred embodiments Would incorpo
rate different sub-sets of the de?nitions in Table 1. Some
might choose not to implement a column (for example, not
de?ning the rules for any Logical Expression); some might
not choose to implement a roW (for example, not de?ning
the reWrites for the Relational Operation ‘EXTEND’).

In the preferred embodiment of the present invention, the
Relation Predicate for a particular Relation ‘R1’ is derived
and stored in the SC at the time R1 is created, is appropri
ately altered at such times as the set of relevant constraints
or the relation de?nition are modi?ed, and is eliminated,
either logically or physically, at such times as R1 is
destroyed. Creation, modi?cation, and destruction of Rela
tion Predicates, collectively referred to as Relation Predicate
de?nition updates, may be triggered by, for example, signals
received by the RDBMS (or other suitable softWare com
ponent) from a suitably authorized user, alteration of appro
priate portions of the SC, or other means Which Will be
Well-knoWn to those familiar With the art, any of Which
indicate that relations and constraints have been created,
modi?ed, or destroyed. In an alternative embodiment, Rela
tion Predicate de?nitions are updated periodically. In a
further alternative embodiment, Relation Predicate de?ni
tions are updated as necessary and appropriate When those
Relation Predicates are needed for some particular purpose.

In the preferred embodiment, the creation and modi?ca
tion of Relation Predicates is triggered by the creation and
modi?cation of relation and constraint de?nitions, and more
speci?cally by the storage of those de?nitions in the SC. (In
an alternative embodiment, the algorithm for creation and
modi?cation of Relation Predicates is an integral part of the
algorithms for creation and modi?cation of relation and
constraint de?nitions, possibly resulting in the storage of the

US 7,263,512 B2
21

Relation Predicate in the SC.) The SC contains one or more
tables Which records the objects (columns, domains) upon
Which each relation depends, and the set of such objects on
Which R1 depends is retrieved from the SC.

If R1 does not depend on other relations, the constraint
de?nitions Which reference either R1 or these objects,
including domain, column, roW, and multi-roW constraints,
are then retrieved from the SC, said de?nitions being stored
in as logical predicates, and each being logically conjoined.

If the R1 depends on one or more other relations, the
Relation Predicates for these relations and the query tree that
de?nes R1 are retrieved. The query tree is converted into a
nested, linear representation containing only unary and
binary relational operations (restriction, projection, product,
union, and so on) and relation references (e.g., relation name
or relation variable) as operands using means Well-known to
those familiar With the art. Each operand and its correspond
ing operands form a relational expression and are replaced
With the corresponding logical expressions. In the preferred
embodiment, Table 1 above is stored (for example, in the
SC, embedded in the program, or other obvious means) and
the replacement accomplished by lookup in Table 1 and
substitution in the expression. The de?nitions of any multi
relation (i.e., database) constraints that reference only those
relations already referenced Within the expression are also
retrieved (e.g., from the SC) and logically conjoined With the
existing predicates.

In the preferred embodiment, modi?cation of a relation
de?nition (e.g., adding a neW column), adding a neW con
straint, dropping an existing constraint, or modifying an
existing constraint may be handled by dropping the de?ni
tions of any existing relation predicates that depend on the
objects referenced by that relation de?nition or those con
straints and creating those relations predicates again using
the methods described for creation of a relation predicate. In
an another embodiment, the affected portions of those rela
tion predicates are appropriately either replaced With the
appropriate updated predicates or deleted; numerous means
for identifying the dependant portions of a predicate and
performing expression substitution of those dependant por
tions With updated versions are Well-known to those familiar
With the art.

For example, if the relation ‘Date’ discussed above is
created, the SC Will then contain for ‘Date’ a symbolic
representation of the roW constraint ‘FORALL (x, y, Z) IN
‘Dates’, (x IN ‘Months’) AND (y IN ‘Days’) AND (Z IN
‘Years’)’. The SC Will also have a symbolic representation
of the domain constraints for ‘Months’ and ‘Days’ and
‘Years’ corresponding to ‘FORALL x in ‘Months, (x IN
‘Numerals’) AND (1<:x<:12)’; ‘FORALL y in"Days’, (y
IN ‘Numerals’) AND (1<?/<:31)’; ‘FORALL Z in ‘Years’,
(Z IN ‘Numerals’) AND (1999Z<2100)’, Where ‘Numerals’
is a fundamental domain in the sense that the RDBMS
inherently knoWs hoW to test membership for that domain
given a particular data value. The SC Will have a symbolic
representation of the roW constraints for ‘Date’ correspond
ing to a set of conjuncts properly constraining the value of
‘Days’ according to the value of ‘Months’, e.g. ‘FORALL
(x, y, Z) IN ‘Dates’, (x:1 IMPLIES y<:31) AND (x:2
IMPLIES y<:29) AND (etc.)’. The SC Will also have a roW
constraint for ‘Date’ corresponding to ‘FORALL (x, y, Z) IN
‘Dates’, ((x:2) AND (Z modulo 4:0)) IMPLIES (y<:28)’.
These constraints are retrieved from the SC and logically
conjoined. After collecting terms, the resulting Relation
Predicate for ‘Dates’ is:
‘FORALL (x, y, Z) IN ‘Dates’, (x IN ‘Months’) AND (y
IN ‘Days’) AND (Z IN ‘Years’) AND ((x IN ‘Numer

20

25

30

35

40

45

50

55

60

65

22
als’) AND (1<q<:12)) AND ((y IN ‘Numerals’) AND
(1<:y<:31)) AND ((Z IN ‘Numerals’) AND
(1999<Z<2100)) AND (x:1 IMPLIES y<:31) AND
(x:2 IMPLIES y<:29) AND (etc.) AND (((x:2) AND
(Z modulo 4:0)) IMPLIES (y<:28))’

Similarly We might, for example, have determined that
relations ‘Employees’ With columns (ENUM, ESAL,
EDEPT) and ‘Departments’ With columns (DNUM,
MNUM) and have the Relation Predicates, E(x, y, Z) and
D(u, v) respectively. For clarity, We abbreviate uniqueness
constraints or predicates, the form of Which is given in Table
1, as ‘Unique(x)’. E(x, y, Z) and D(u, v) are then, for
purposes of illustration, as folloWs:

‘E(x, y, Z):‘FORALL (x, y, Z) IN ‘Employees’, (x IN
‘Employee_Numbers’) AND (y IN ‘Salaries’) AND (Z
IN ‘Department_Numbers’) AND ((x IN ‘Numerals’)
AND (0<x<100000)) AND ((y IN ‘Numerals’) AND
(y>0)’AND ((Z IN ‘Numerals’) AND (0<Z<1000))
AND Unique(x) AND (EXISTS
(Departments.DNUM:Z)’

and
‘D(u, v):‘FORALL (u, v) IN ‘Departments’, (u IN

‘Department_Numbers’) AND ((u IN ‘Numerals’)
AND (0<u<1000)) AND Unique(u) AND (v IN
‘Employee_Numbers’) AND ((v IN ‘Numerals’) AND
(0<v<100000)) AND EXISTS(Employees.DNUMq1)’

The Relation ‘Managers_Salaries’ With columns (DNUM,
MNUM, ESAL) is derived from ‘Departments’ and
‘Employees’ by forming the product, restricting to those
roWs for Which (MNUMIENUM) and (DNUMIEDEPT),
and projecting DNUM, MNUM, and ESAL. The effect of
three relational operations are given in Table 1 and, on
successive application and rearrangement of terms, give the
folloWing Relation Predicate MS(u, x, y) for the Derived
Relation ‘Managers_Salaries’:

‘MS(u, x, y):FORALL (u, x, y) IN
(‘Employees’PRODUCT ‘Departments’), (x IN
‘Employee_Numbers’) AND (y IN ‘Salaries’) AND (Z
IN ‘Department_Numbers’) AND ((x IN ‘Numerals’)
AND (0<x<100000)) AND ((y IN ‘Numerals’) AND
(y>0)’ AND Unique(x)
AND

(u IN ‘Department_Numbers’) AND ((u IN ‘Numerals’)
AND (0<u<1000)) AND Unique(u) AND EXISTS
(Employees.DNUMq1)
AND

EXIST(Z) AND EXISTS(Employees(x, y, Z)) AND ((Z IN
‘Numerals’) AND (0<Z<1000)) AND (EXISTS
(Departments.DNUM:Z) AND EXISTS(v) AND
EXISTS(Managers(u, v)) AND (v IN ‘Employee_
Numbers’) AND ((v IN ‘Numerals’) AND
(0<v< 100000))
AND

Creating Augmented Derived Relation De?nitions

One objective of this method is to enable the RDBMS to
augment derived relation de?nitions With a computable
mapping betWeen the columns of the derived relation to
columns of the base relations on Which it is de?ned (‘Map
ping’). The mapping from source columns (‘xl’,‘x2,’,
‘x3’, . . . ‘xn’) to a particular derived relation column (‘ye’)

may be represented symbolically as a function ‘YZ-IfZ-(XI, x2,
x3, . . . xn)’, this de?nition of this function being given
normally in the course of de?ning the derived relation. In

US 7,263,512 B2
23

order to update a particular source column (‘xi’) given a new
value of a particular derived relation column, an inverse
function de?nition (or its equivalent) is required and may be
represented symbolically as a function ‘xi:gl-(yj)’. In the
case Where the derived relation is created entirely from a
relational operation on one or tWo source relations, the
relationship is just ‘XI-11.’ (a ‘simple map’). The set of
inverse functions g:{gl-()j provides a method of computing
the values of source columns from the values of derived
columns. Every derived relation may be derived from
repeated application of the relational operations (each of
Which is either unary or binary) on a ?nite set of source
relations, such a de?nition of the derived relation most often
being represented internally as a query tree.

In the preferred embodiment, the Mapping is fully deter
mined by the information in the query tree and depends on
the relational operations of restrict, product, union, set
difference, intersection, join, and projection. The method
proceeds from the base relations up through the de?ning
query tree, combining the columns of each source relation
(‘S 1’, ‘S2’) in accordance With the relational operation
designated by a node of the tree to produce the derived
columns of the derived relation (‘D’) and therefore the
function Which de?nes the mapping betWeen a derived
column and a particular set of source columns. This details
on determining this Mapping are as folloWs.

For each node in the query tree, traversing the tree from
the bottom up, the function is identi?ed that de?nes values
of columns of the derived relation in terms of values of the
corresponding source relations.

For each such mapping function, the corresponding
inverse function is then found:

(a) If the relational operation is a ‘restrict’ or ‘product’,
the columns of the derived relation map identically to
those of the source relations. Thus S.xl.:D.yj for each
column in each S. Additionally, if the relational opera
tion is a ‘tWo-variable restrict’ sometimes called a ‘join
condition’ then both variables of the join condition map
to the same derived relation columns. For example, if
‘S1.xl:S2.x2’ and S1.x1:D.y2, then Sl.xl:D.y2 is added
to the map.

(b) If the relational operation is a ‘union’, ‘set difference’,
or ‘set intersect’, the columns of the derived relation
map to the columns of both the source relations. Thus,
given a value of a column D.yl-, Sl.xl-:D.yi for each
column in S1 and S2.xi:D.yi for each column in S2.

(c) If the relational operation is ‘project’, then for each
column S2.xk in the source that is eliminated by pro
jection and for Which a default constant ‘c’ or default
function ‘def({Zl-})’ (Where {Z1} is a set of function
arguments) has been de?ned, the map is de?ned as
‘S2.xk:c’ or ‘S2.xk:def({Zl-})’.

This procedure results in each column of the ?nal relation
(represented by the root node of the query tree) being
speci?ed in terms of columns of the relations represented by
leaf nodes of the query tree, the function being given by
function composition (nested functions) as the tree is tra
versed from leaves to root. Tree traversal is a common and
Well-knoWn procedure to those skilled in the art With a
number of readily accessible programming methods
enabling it. (E.g., see Donald Knuth, The Art of Computer
Programming Vol. 1, Addison-Wesley, 1998, ISBN
0201485419)

The inverse function composition is then derived so that
the value of each column of a relation represented by a leaf
node of the query tree can be found given a value of one or
more columns of the relation represented by the root node of

20

25

30

35

40

45

50

55

60

65

24
the query tree. This derivation can come from, for example,
a pre-prepared table listing knoWn functions and their
inverses, from user entry, or from inductive function deri
vation (from the function de?nition and possibly certain
constraints), and functional combination, all techniques
being standard methods Well-knoWn to those skilled in the
art of computer programming.

In a ?nal step of the method, the Mapping so derived is
stored in the SC and indexed by, for example, derived
relation name, source relation name, and column name.

In an enhancement to the preferred embodiment, user
supplied or system supplied names of columns (known also
as ‘renaming’, or supplying a ‘column alias’ or ‘synonym’)
are taken into account in the mapping. For example, a vieW
of the ‘Employees’ relation might be created restricting
salaries to those greater than $100,000. The user might then
give the column derived from the source column ‘ESAL’ a
more descriptive name such as ‘HIGH_SALARIES’. This
enhancement might be implemented, for example, by simple
substitution of the supplied name in the mapping in place of
the original column name or symbol, or by any of a number
of other methods that Will be obvious to those familiar With
the art.

In a further enhancement of the preferred embodiment,
computed columns are taken into account and the functional
relationship betWeen source columns and derived columns is
recorded as part of the mapping information. Computed
columns are derived from one or more source columns by a

Well-de?ned computational procedure or function that is
supplied by the creator of the derived relation at de?nition
time or by a subsequent modi?cation of that de?nition. For
example, multiplication by a conversion factor (12) might be
used to convert monthly salaries (‘ESAL’) in the ‘Employ
ees’ relation into yearly salaries in the derived relation. As a
further example using the same relation, salaries might be
converted from a numeric quantify into a character string
and the constant string ‘YB/YR’ might be concatenated onto
the end.

To complete the mapping betWeen derived relation col
umns and source relation columns When the derived column
is de?ned as a function of one or more source relation

columns, the inverse of the computed column function must
be recorded or derived from the derived relation de?nition.
In one embodiment, the inverse function is computed auto
matically from the supplied function de?nition using, for
example, an equation solver or functionally equivalent soft
Ware means. In another embodiment, the inverse function
de?nition is determined by manual means (for example,
supplied by a user such as the de?ner of the derived
relation). In a further embodiment, a combination of auto
matic and manual means may be used. For example, manual
means might be used Where automated means for a particu
lar function Would be overly complex or computationally
expensive. Alternatively, automated means might be used
Where determination of the inverse function Would be too
dif?cult or unreliable for implementation via manual means.
In yet a further embodiment, an effective, alternative inverse
function may be supplied by manual means for column
derivation procedures that do not have a unique inverse
function. In yet a further embodiment, the combination of
the current values of the source and derived columns, the
updated values of the derived columns, and the functional
relationships among them (possibly including certain integ
rity constraints), are used in conjunction With softWare
means commonly knoWn to those skilled in the program
ming arts, such as numerical approximation techniques,

US 7,263,512 B2
25

constraint programming, matrix algebra, linear program
ming, and the like, to determine acceptable values of the
updated source columns.

Major Steps of the Relation Update Algorithm

In the preferred embodiment of the invention, the funda
mental RDBMS modi?cation functions are handled uni
formly through an identical set of steps for each transaction,
including those Which modify the RDB; directly, Whether
using the Relational Predicates to modify the structure or the
data elements to modify the contents. FIG. 5 is a ?owchart
shoWing an abstraction of the major steps of the method.
These steps are: (l) Pre-Processing (‘before image’ creation
or identi?cation, and preparation of the query language
request), (2) Reduction (creation of the Target Relation
Predicate and reWriting the expression), (3) Modi?cation
(updating the ‘after image’ of the affected relations, an
example of Which is given in FIG. 6 (6A and 6B); (4) Update
Validation (validate the success of the update), and (5) After
Imaging (saving the current ‘after image’ of each affected
Base Relation for subsequent processing), and (6) Final
Validation (multi-relation constraint checks). In the pre
ferred embodiment recursive rather than iterative repetition
is used, particularly for traversing the query tree. Each of
these is further described beloW, and they may be imple
mented in any language or using any functional algorithm
knoWn to those skilled in the art.

Pre-Processing

The objective of Pre-Processing is to create or identify the
current ‘before image’ and to prepare the query language
request. If the query language request is the initial request in
a transaction, the current ‘before image’ is just the current
committed image of the database; otherWise it is identi?ed
as the most recent ‘after image’ of each Base Relation
resulting from previous modi?cation requests Within the
current transaction. Using methods Well-known to those
familiar With the art, the syntax of the query language
request is validated via the appropriate query language
parser and all object references are validated. If there are
syntactic or reference errors, the parser handles the error in
the usual manner for the particular RDBMS (e.g., returning
an error to the user or requesting program).

If there are no errors, the parser generates an internal
representation of the request Which, in the preferred embodi
ment is a query tree.

If the operation associated With root node of the query tree
is a Retrieval function, the query tree is processed by the QE
(‘query engine’) using methods that Will be Well-known to
those familiar With the art.

If the operation associated With the root node of the query
tree is a modi?cation request function (e.g., a Delete func
tion, an Insert function, or an Update function), the function
identi?cation is saved, the target of the function is identi?ed
(the ‘Target Relation’) and that relation denotation is pushed
onto the Target Relation Stack (‘TRS’).

The query tree is separated into tWo components, one
representing the target relation (the ‘Target’) to Which the
modi?cation request is to be applied, and one being a query
subtree representing the source relation (the ‘Source Query
Tree’); the source relation may Well be, for example, a
derived relation, a base relation, or a relational ‘constant’.
The Target is simply the target relation reference identi?ed
in the modi?cation request, and in particular represents the
‘after image’ of the target relation. The Source Query Tree

20

25

30

35

40

45

50

55

60

65

26
is separated into tWo further subquery trees, one representing
a relation that is to be subtracted via set difference from the
target relation (the ‘Delete Query Tree’) and one that is to be
added via set union to the target relation (the ‘Insert Query
Tree’). Both the Delete Query Tree and the Insert Query Tree
represent retrieval functions and each relation referenced
Within them denotes the current ‘before image’ of that
relation, this being the ‘after image’ of that relation resulting
from the mo st recent modi?cation request (if any) Within the
current transaction and otherWise the initial image of the
relation as of the beginning of the transaction. The Target,
the relation produced on execution of the Delete Query Tree
(the ‘Deleted Relation’), and the relation produced on execu
tion of the Insert Query Tree (the ‘Inserted Relation’) each
have the same columns.

Reduction

The objective of Reduction is to obtain the Relation
Predicate corresponding to the Target, create the Target
Relation Predicate, and to reWrite the expression so as to be
able to apply each appropriate portion of the derived source
relations (obtained by processing the Delete Query Tree and
the Insert Query Tree) to one of those Base Relations from
Which the Target is derived and in the subsequent Modi?
cation Step. The folloWing steps are performed:
The Relation Predicate corresponding to the Target (the

‘Target Relation Predicate’) is obtained from the SC by
lookup.
The Mapping betWeen the Target and each Base Relation

on Which it depends is obtained from the SC by lookup.
For each Base Relation referenced in the Target Relation

Predicate, all terms pertaining to that Base Relation are
collected With all single predicate variable and constant
terms grouped together and all multi-variable terms grouped
together (‘Augmented Base Relation Predicate’).

For each Base Relation referenced in the Target Relation
Predicate, all multi-relation constraints that reference the
Base Relation are retrieved from the SC by lookup.

Modi?cation

The objective of Modi?cation is to apply the appropriate
portion of the Deleted and Inserted Relations to the appro
priate Base Relation of those referenced in that Target
Predicate. The folloWing steps are performed:
The QE processes the Delete Query Tree and the Insert

Query Tree, creating Deleted and Inserted Relations respec
tively from the current ‘before image’ of the referenced Base
Relations. Either Deleted Relation or Inserted Relation or
both may be empty sets of roWs.

For each Base Relation in the Target Predicate:
(a) The portion of the Mapping relevant to the Base

Relation is identi?ed.
(b) The partition of the Deleted Relation corresponding to

those columns that map to columns of the Base Rela
tion is created (‘Deleted Partition’).

(c) The partition of the Inserted Relation corresponding to
those columns that map to columns of the Base Rela
tion is created (‘Inserted Partition’).

(d) As an optional step, any so-called ‘before actions’
triggered by the relevant update function may be
executed at this point.

(e) The current ‘after image’ of the Base Relation (‘Base
Relation AI’) is modi?ed through the relational opera
tion of set difference, by removing from Base Relation

